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Topology of the Symmetry Group of the Standard
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We study the topological structure of the symmetry group of the standard model,
GSM 5 U(1) 3 SU(2) 3 SU(3). Locally, GSM > S1 3 (S3)2 3 S5. For SU(3),
which is an S3-bundle over S5 (and therefore a local product of these spheres)
we give a canonical gauge i.e., a canonical set of local trivializations. These
formulas give explicitly the matrices of SU(3) without using the Lie algebra
(Gell-Mann matrices). Globally, we prove that the characteristic function of SU(3)

is the suspension of the Hopf map S3 ®
h

S2. We also study the case of SU(n) for
arbitrary n, in particular the cases of SU(4), a flavor group, and of SU(5), a
candidate group for grand unification. We show that the 2-sphere is also related
to the fundamental symmetries of nature due to its relation to SO0(3, 1), the
identity component of the Lorentz group, a subgroup of the symmetry group of
several gauge theories of gravity.

1. INTRODUCTION

A typical gauge theory on a spacetime M 4 is a theory of connections

on a principal G-bundle j over M 4, where G is the symmetry group. The
connections are coupled to matter fields, which are sections of associated

bundles of j , defined by linear representations of G.

As is well known, the symmetry group of the electroweak and strong

forces (standard model) before spontaneous symmetry breaking is given by

(Taylor, 1976)

GSM 5 U(1) 3 SU(2) 3 SU(3)
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After symmetry breaking, however, GSM breaks down to G8SM 5 U(1) 3
SU(3), the remaining exact symmetry of the electromagnetic and color forces.

In this paper, we study U(1), SU(2), and SU(3) as total spaces of certain
principal bundles. In particular, for the case of SU(3), this allows us to give

explicit expressions of the matrices of the group without the use of the

exponential map applied to linear combinations of the Gell-Mann matrices

(Gell-Mann and Ne’ eman, 1964). Moreover, we show that the characteristic

function of SU(3) is the suspension of the Hopf map S3 ®
h

S2 and, as suggested

to us by G. Naber (Naber, 1998), this fact might be related to the existence

of smooth magnetic monopoles in gauge theories. We also show that as an

SU(n 2 1)-bundle, the group SU(n) has a reduction to SU(n 2 2) when n is

even, and has no such reduction when n is odd (n $ 3). This bundle reduction

is similar to that which occurs in the Higgs mechanism in the context of
spontaneous symmetry breaking (Choquet-Bruhat et al., 1989).

The group U(1) is the circle or 1-sphere S1, the unit complex numbers,

which is the total space of the real Hopf bundle

S0 ® S1 ®
k R

2
S1

The group SU(2), given by all complex matrices

A 5 1 z w

2 wÅ zÅ 2 with det A 5 1

is the 3-sphere S3 or unit quaternions, since if z 5 a 1 i b and w 5 g 1 i d ,

then the condition of unit determinant is a 2 1 b 2 1 g 2 1 d 2 5 1. SU(2) is
the total space of the complex Hopf bundle

S1 ® S3 ®
k C

2
S2

In the mathematical literature it is well known that for all n 5 2, 3, . . .
the groups SU(n) are principal SU(n 2 1)-bundles over the (2n 2 1)-spheres,

i.e., that one has the pairs of maps (Steenrod, 1951)

SU(n 2 1) ®
i

SU(n) ®
p n

S2n 2 1

where i and p are the canonical inclusion and projection, respectively. In

particular, for n 5 3 one has the SU(2)-bundle

SU(2) ® SU(3) ®
p 3

S5

which in particular means that locally SU(3) > S5 3 S3 since SU(2) > S3;

moreover, according to the theory of bundles, the isomorphism classes of
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SU(2)-bundles over S5 are in one-to-one correspondence with the fourth

homotopy group of SU(2), i.e., kSU(2)(S
5) l P 4(SU(2)) > P 4(S

3) > Z 2 5
{0, 1}: 0 corresponds to the trivial bundle, S5 3 S3, while 1 corresponds to
SU(3) (see Section 3.2). In other words, SU (3), the symmetry group of the

strong interactions, is the unique (up to isomorphism) nontrivial SU (2)-

bundle over the 5-sphere, and as this result shows, it is also constructed from

spheres, though not globally. This means that

GSM 5
loc.

S1 3 (S3)2 3 S5

and, after symmetry breaking

G8SM 5
loc.

S1 3 S3 3 S5

For higher n, however, uniqueness is lost since, for example, for n 5
4 and n 5 5 one has the bundles

SU(3) ® SU(4) ®
p 4

S7

and

SU(4) ® SU(5) ®
p 5

S9

respectively, and kSU(3)(S
7) l P 6(SU(3)) > Z 6 and kSU(4)(S

9) l P 8(SU(4))

> Z 24 (ItoÃ, 1993). Notice, however, that locally any SU(n) is a topological

product of odd-dimensional spheres:

SU(4) 5
loc.

S7 3 SU(3) 5
loc.

S7 3 S5 3 S3

SU(5) 5
loc

S9 3 SU(4) 5
loc.

S9 3 S7 3 S5 3 S3

. . .

SU(n) 5
loc.

S2n 2 1 3 S2n 2 3 3 . . . 3 S5 3 S3

This expression allows us to define a formula which gives, in a canonical

way, any element of SU(n) in terms of points of spheres.
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A different approach to the study of geometrical aspects of the standard

model and general relativity is that of Saller (1998), who considers matter

fields as sections of associated bundles defined by (nonlinear) representations
on coset spaces of Lie groups. In general relativity, we study the Lie group

isomorphism between the proper orthochronous Lorentz group and the group

of conformal maps of the 2-sphere, while Saller studies the coset space

GL4( R )/O(3, 1) as a parameter space for the Lorentzian metrics on spacetime.

In Section 2 we briefly review the global construction of the bundle

SU(2) ® SU(3) ®
p 3

S5 and construct a canonical set of local trivializations

of SU(3), starting from the (canonical) homogeneous coordinates on C P2,

the complex projective plane. These formulas exhibit SU(3) as a local product

of spheres and, moreover, give explicit expressions for all the matrices of
SU(3) in terms of the spheres S5 and S3.

The above choice of coordinates is natural since for all n $ 2, S2n 2 1 is

a principal bundle over C Pn 2 1 with fiber S1 (complex Hopf bundles):

SU(n 2 1) ® SU(n) ®
p n

S1

¯
S2n 2 1

¯ k C
n

C Pn 2 1

and C Pn 2 1 has n canonical charts defining its homogeneous coordinates.

Then the bundle p n , for all n, can be locally trivialized in a canonical way,

n being the number of local trivializations. In the following the Hopf map

k C
2 will be denoted by h. If (z

w) P S3 , C 2 ( ) z ) 2 1 ) w ) 2 5 1) and C P1 is

identified with the Riemann sphere C
Ã

5 C ø { ` }, then h is given by

h 1 z

w 2 5 H z/w, w Þ 0

` , w 5 0

It can be proved that h is essential, i.e., it is not homotopic to a constant

map (Spanier, 1966).

In Section 3 we prove that the characteristic (or clutching) map of SU(3)

is the suspension of the Hopf map S3 ®
h

S2. Since the clutching map allows

to construct the bundle, then SU(3) is built from information contained in
the Hopf map. This map, besides having great importance in homotopy theory,

plays a relevant roÃle in physics, e.g., in the geometrical description of the

spin-1/2 system (Ashtekar and Schilling, 1995; Corichi and Ryan, 1997) and

the Dirac monopole of unit magnetic charge (Wu and Yang, 1975).



Topology of the Symmetry Group of the Standard Model 2489

In Section 4 we investigate the general case of SU(n) and, using a result

of Steenrod for U(n), we prove that for even n, n $ 2, the characteristic map

gn 1 1: S2n ® SU(n) of SU(n 1 1) is a homotopy lifting of the (2n 2 3)th

suspension of h. (If Z ®
p

Y is a projection and X ®
f

Y is a continuous funtion,

then p lifts f if there is a continuous function X ®
g

Z such that p + g 5 f.
The lifting is up to homotopy if p + g , f.) On the other hand, for odd n,

n $ 3, p n + gn 1 1 is inessential or nullhomotopic (i.e., homotopic to a constant

map). From the physical point of view, the cases of SU(5) and SU(4) are

particularly interesting, since SU(5) is a candidate group for grand unification
(Mohapatra, 1986), and SU(4) is a flavor group.

Using the concept of bundle reduction (see, e.g., Aguilar and Socolovsky,

1997a), we give a geometric interpretation to these results, namely if n is

odd, then SU(n) as an SU(n 2 1)-bundle does not have a reduction to SU(n 2
2), and if n is even, then it has such reduction. These reductions refer to the
internal structure of the symmetry groups, while those associated with the

Higgs mechanism (Choquet-Bruhat et al., 1989) are related to the geometry

of the principal bundles describing the gauge theories.

In Section 5 we briefly discuss how the 2-sphere S2 appears in the

context of the symmetry group of the fundamental interactions due to the

canonical isomorphism between its conformal group and SO0(3, 1), the proper
orthochronous Lorentz group.

2. THE BUNDLE S3 ® SU(3) ®
p 3

S5

2.1. The Groups U(3) and SU(3)

The n-dimensional complex vector space C n equipped with the Hermitian

scalar product ^
-
z ,

-
w & 5 ( n

i 5 1 zi wi is a Hilbert space. The n 3 n complex

matrices which leave ^ ,& invariant form the group U(n), i.e., U(n) 5 Aut ( C n,

^ ,& ): the group of automorphisms of C n as a Hilbert space. If A P U(n) and

A* is the transpose conjugate matrix, then A*A 5 I, i.e., A* 5 A 2 1, so ) det

A ) 5 1 and dim R U(n) 5 n2. The topology of U(n) is inherited from the
vector space of n 3 n complex matrices, which is isomorphic to Euclidean

space E 2n2
. U(n) is a Lie group and SU(n) is the closed Lie subgroup consisting

of matrices whose determinant is 1. Since U(n) is compact, SU(n) is also

compact.

For n 5 3, SU(3) is 2-connected, i.e., P k(SU(3)) 5 0 for k 5 1, 2, and

P 3(SU(3)) > Z . Topologically, U(3) > SU(3) 3 U(1), then U(3) is connected

but not 1-connected since P 1(U(3)) > Z .
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2.2. The Inclusion and Action SU(2) ® SU(3)

Let

i : SU (2) ® SU (3), 1 z w

2 wÅ zÅ 2 j 1 z w 0

2 wÅ zÅ 0

0 0 1 2
be the inclusion of SU(2) into SU(3); call SU(2)8 5 i (SU(2)). Clearly SU(2)8 >
SU(2), both topologically and as a group. The right action SU(3) 3 SU(2)8 ®
SU(3) is given by matrix multiplication (B, A) j BA, i.e.,

1 a b g
s e w
k l m 2 1 z w 0

2 wÅ zÅ 0

0 0 1 2 5 1 a z 2 b wÅ a w 1 b zÅ g
d z 2 e wÅ d w 1 e zÅ w
k z 2 l wÅ k w 1 l zÅ m 2

Let q: SU(3) ® SU(3)/SU(2)8 be the quotient map, i.e., q(B) 5 [B],

where SU(3)/SU(2)8 is the orbit space {[B]}B P SU(3) with the quotient topology,

and [B] 5 BSU(2)8, in particular, [I ] 5 SU(2)8. Notice that ) g ) 2 1 ) w ) 2 1
) m ) 2 5 1, i.e.,

1 g
w
m 2 P S5 , C 3

It is easy to verify that the following diagram commutes:

SU(3)
gq op 3

SU(3)/SU(2)8 ®
k

S5

where

p 3(B) 5 1 g
w
m 2 and k ([B]) 5 B 1 0

0

1 2
In particular,

k ([I ]) 5 1 0

0

1 2
k turns out to be a homeomorphism with inverse
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k 2 1 1 g
w
m 2 5 B8SU(2)8 for any B8 5 1 ? ? ? g

? ? ? w
? ? ? m 2 P SU(3)

(an explicit formula for k will be given in Section 2.3). Clearly

p 2 1
3 1 5 1

g
w
m 2 6 2 5 B8SU(2)8 > SU(2)8 > SU(2) > S3

so S3 is the fiber of p 3.

2.3. Local Trivializations

Consider the S1-bundle S5 ®
k C

3
C P2, where the complex projective plane

is the space of complex lines through the origin in C 3; C P2 has three canonical

charts given by the open sets

Vk 5 5 -
z ( C \ {0}) ) -

z 5 1 z1

z2

z3 2 , and zk Þ 0 6 , C P2, for k 5 1, 2, 3

and the homeomorphisms Vk ® C 2 map
-
z ( C \ {0}) to ( j i , j j) 5 (zi /zk , zj /zk)

with i, j, k in cyclic order, the j i are called homogeneous coordinates. Then

the preimages of Vk by the projection k 3 define three open sets in S5 given by

Uk 5 k 2 1
3 (Vk) 5 5 1

z1

z2

z3 2 ) zk Þ 0 6 [ S5
k , S5

ø 3
i 5 1 U i 5 S5 with U i ù Uj Þ f for all i, j and (0, 0, 1) P U3 , S5 but (0,

0, 1) ¸ U1, U2. Notice that the complements of S5
k with respect to S5 are

homeomorphic to S 3:

(S5
3)

c 5 S5 \S5
3 5 5 1

z1

z2

0 2 ) ) z1 ) 2 1 ) z2 ) 2 5 1 6 > S3

and analogous formulas for S5
1 and S5

2; (S5
k)

c are closed sets in S5. We shall

trivialize the SU(3) ®
p 3

S5 bundle over the Uk.

In order to construct local sections of the bundle p 3, consider the follow-

ing complex matrices:
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CÄ 5 1 1 0 a

0 1 b

0 0 c 2 , BÄ 5 1 1 0 a

0 0 b

0 1 c 2 , AÄ 5 1 0 0 a

1 0 b

0 1 c 2
It is easy to verify that the three column vectors in each of them are linearly

independent if, respectively, c Þ 0, b Þ 0, and a Þ 0. In the three cases we

take ) a ) 2 1 ) b ) 2 1 ) c ) 2 5 1. By the Gram±Schmidt procedure we can construct
unitary matrices CÃ, BÃ, and AÃand then, multiplying each of them from the

right by the matrix (
z
0

0
I), where z 2 1 5 detCÃ, detBÃ, or detAÃ, we obtain the

following elements of SU(3):

C 5 1
) c ) 2

c ! 1 2 ) b ) 2
2 abÅ

! 1 2 ) b ) 2
a

0 ! 1 2 ) b ) 2 b

2 aÅ

! 1 2 ) b ) 2
2 bÅ c

! 1 2 ) b ) 2
c 2

B 5 1
2 ) b ) 2

b ! ) a ) 2 1 ) b ) 2
acÅ

! 1 2 ) c ) 2
a

2 aÅ

! ) a ) 2 1 ) b ) 2
2 bcÅ

! 1 2 ) c ) 2
b

0 ! 1 2 ) c ) 2 c 2 ,

A 5 1
2 bÅ

! 1 2 ) c ) 2
2 acÅ

! 1 2 ) c ) 2
a

) a ) 2
a ! 1 2 ) c ) 2

2 bcÅ

! 1 2 ) c ) 2
b

0 ! 1 2 ) c ) 2 c 2
with detCÃ5 c/ ) c ) , detBÃ5 2 b/ ) b ) , and detAÃ5 a/ ) a ) .

(These formulas give an explicit expression for B8 in k 2 1 of Section

2.2: given
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1 g
w
m 2 P S5

we choose B8 equal to A, B, or C if, respectively, g , w , or m is Þ 0.) We

define local sections s k: S5
k ® SU(3) as follows:

s 1: S5
1 ® SU(3), 1 a

b

c 2 j s 1 1 a

b

c 2 5 A

s 2: S5
2 ® SU(3), 1 a

b

c 2 j s 2 1 a

b

c 2 5 B

and

s 3: S5
3 ® SU(3), 1 a

b

c 2 j s 3 1 a

b

c 2 5 C

If p : P ® X is a principal. G-bundle over X, and s b : U b ® P are local

sections, then w b : p 2 1(U b ) [ P b ® U b 3 G, where w b ( a) 5 (x, g b ( a)) with

x 5 p ( a) and a 5 s b ( p ( a)) ? g b ( a), are local trivializations. If w a and w b

are local trivializations and U a ù U b Þ f , then w b + w 2 1
a : (U a ù U b ) 3

G ® (U a ù U b ) 3 G satisfies w b + w 2 1
a (x, g) 5 (x, g b a (x)), where g b a : U a

ù U b ® G are the transition functions and s b (x) ? g b a (x) 5 s a (x). In our

case, with G 5 SU(2), P 5 SU(3), X 5 S5, b 5 k 5 1, 2, 3, Uk 5 S5
k, and

Pk 5 SU(3)k 5 5 1
? ? ? z1

? ? ? z2

? ? ? z3 2 P SU(3) ) zk Þ 0 6
the local trivilizations of the SU(2)-bundle p [ p 3: SU(3) ® S5 are

w 1: SU(3)1 ® S5
1 3 SU(2)8,

w 1(R) 5 ( p(R), ( s 1( p(R))) 2 1R) 5 1 1 a

b

c 2 , A*R 2
w 2: SU(3)2 ® S5

2 3 SU(2)8,



2494 Aguilar and Socolovsky

w 2(S) 5 ( p(S), ( s 2( p(S))) 2 1S) 5 1 1 a

b

c 2 , B*S 2
and

w 3: SU(3)3 ® S5
3 3 SU(2)8,

w 3(T ) 5 ( p(T ), ( s 3( p(T ))) 2 1 T ) 5 1 1 a

b

c 2 , C*T 2
The matrices A*R, B*S, and C*T are of the form

1 D
0

0

0 0 1 2 with D P SU(2)

w 1, w 2, and w 3 exhibit the local structure of SU (3). The transition functions are

g12: S5
1 ù S5

2 ® SU(2)8, g12 1 a

b

c 2 5 A*B

g23: S5
2 ù S5

3 ® SU(2)8, g23 1 a

b

c 2 5 B*C

and

g31: S5
3 ù S5

1 ® SU(2)8, g31 1 a

b

c 2 5 C*A

Notice that I P SU(3)3, but I ¸ SU(3)j for j 5 1, 2, so SU(3)3 is an

open neighborhood of the identity. The inverses of the local trivializations
are given by

c 3: S5
3 3 SU(2) ® SU(3)3, 1 1 a

b

c 2 , R3 2 j CR83

c 2: S5
2 3 SU(2) ® SU(3)2, 1 1 a

b

c 2 , R2 2 j BR82

and
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c 1: S5
1 3 SU(2) ® SU(3)1, 1 1 a

b

c 2 , R1 2 j AR81

with c i 5 w 2 1
i after identifying SU(2) > SU(2)8, and

R8k 5 1 Rk
0

0

0 0 1 2 , k 5 1, 2, 3

These formulas give all elements of SU(3) in terms of points of the 3- and

5-spheres.

With the help of the above formulas the set of matrices of SU(3) can
be divided into seven disjoint subsets: SU(3)123, SU(3)i, jk, and SU(3)ij,k, respec-

tively, the pieces of SU (3) lying over S5
123 5 S5

1 ù S5
2 ù S5

3, S5
i, jk 5 S5 \ (S5

j

ø S5
k), and S5

ij,k 5 S5
i ù S5

j \S5
123, with i, j, k P {1, 2, 3} in cyclic order:

1
) c ) 2z/c 1 abÅ wÅ

! 1 2 ) b ) 2
) c ) 2w/c 2 abÅ zÅ

! 1 2 ) b ) 2
a

2 wÅ ! 1 2 ) b ) 2 zÅ ! 1 2 ) b ) 2 b

2 aÅ z 1 bÅ cwÅ

! 1 2 ) b ) 2
2

aÅ w 1 bÅ czÅ

! 1 2 ) b ) 2
c 2 P SU(3)123

) a ) 2 1 ) b ) 2 1 ) c ) 2 5 1; 0 , ) a ) , ) b ) , ) c ) , 1;

1 0 0 ei w

ze 2 i w we 2 i w 0

2 wÅ zÅ 0 2 P SU(3)1,23

1 2 ze 2 i w 2 we 2 i w 0

0 0 ei w

2 wÅ zÅ 0 2 P SU(3)2,31

1 ze 2 i w we 2 i w 0

2 wÅ zÅ 0

0 0 ei w 2 P SU(3)3,12
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1
2 zbÅ 2 wbÅ a

z ) a ) 2
a

w ) a ) 2
a

b

2 wÅ zÅ 0 2 P SU(3)12,3

) a ) 2 1 ) b ) 2 5 1, a, b Þ 0;

1
2 z ) b )

b

2 w ) b )
b

0

wÅ bcÅ

) b )
2 zÅ bcÅ

) b ) b

2 ) b ) wÅ ) b ) zÅ c 2 P SU(3)23,1

) b ) 2 1 ) c ) 2 5 1, b, c Þ 0;

1
) c ) 2z
c

) c ) 2w
c

a

2 wÅ zÅ 0

2 aÅ z 2 aÅ w c 2 P SU(3)31,2

) a ) 2 1 ) c ) 2 5 1; a, c Þ 0; with ) z ) 2 1 ) w ) 2 5 1 and w P [0, 2 p ).

Remark. The above results can be extended to the bundles

U(n 2 1) ® U(n) ®
pn

S2n 2 1

i.e., to the unitary groups . In particular, for n 5 3 we have the pair of maps

U(2) ®
i

U(3) ®
p3

S5

with

U(2) 5 H 1 z w

wÅ ei l 2 zÅ ei l 2 Z ) z ) 2 1 ) w ) 2 5 1, l P [0, 2 p ) J
The local trivializations of U(3), f k: U(3)k ® S5

k 3 U(2)8, k 5 1, 2, 3, and

where U(2)8 5 i (U(2)) are given by the same formulas as those for SU(3),

with the matrices A, B, and C, respectively, replaced by the matrices AÃ, BÃ,
and CÃ.
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3. SU(3) FROM THE N 5 2 HOPF BUNDLE

3.1. Suspension

The suspension of a topological space X is the quotient space given by

SX 5
X 3 I

X 3 {0}, X 3 {1}
5 {[x, t]}(x, t) P X 3 I

with

[x, t] 5 5
{(x, t)}, t P (0, 1)

X 3 {0}, t 5 0

X 3 {1}, t 5 1

This means that in the product X 3 I, X 3 {0} has been identified to one

point and X 3 {1} has been identified to another point. Intuitively, it is clear

that SS0 > S1, SS1 > S2, . . . , SSn 2 1 > Sn. The suspension of a continuous
function is defined by Sf([x, t]) 5 [ f(x), t], which satisfies the functorial
properties SidX 5 idSX and S(g + f ) 5 Sg + Sf if f : X ® Y and g: Y ® Z.

If pZ: Z 3 I ® SZ is the projection p(z, t) 5 [z, t], then the following

diagram commutes:

X ®
f

Y
i 0 ¯ ¯ i 0

X 3 I ®
f 3 id

Y 3 I
pX ¯ ¯ p Y

SX ®
Sf

SY

If H: X 3 I ® Y is a homotopy between h0 and h1, then SH:SX 3 I ® SY
given by SH([x, t], t8) 5 [H(x, t8), t], i.e., (SH )t8 5 SH t8 is a homotopy
between Sh0 and Sh1. SH is called the suspension of the homotopy. Then

there is a well-defined function between homotopy classes of maps S: [X, Y ]
® [SX, SY ], [ f ] ® S([ f ]) : 5 [Sf ].

If X is a pointed space with base point x0, then the reduced suspension
of X, Sr X, is defined by

Sr X 5
X 3 I

X 3 {0} ø X 3 {1} ø {x0} 3 I

i.e., all the points in X 3 {0}, X 3 {1}, and {x0} are identified to one point.

In this case its elements are given by
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[x, t] 5 5 X 3 {0} ø X 3 {1} ø {x0} 3 I, x 5 x0, all t P I

t 5 0 or 1, all x P X

{(x, t)}, t P (0, 1) and x Þ x0

xÄ 0 5 [x0, t] is the base point of SrX. If f : X ® Y preserves the base points,

i.e., if f(x0) 5 y0, then Sr f(xÄ 0) 5 y0, and if h0 ,H h1(rel x0), then Sh0 ,SH
Sh1(rel

xÄ 0). (rel x0 means that the homotopy H preserves the base point.) Also, there
is a homeomorphism w 2 1

n 1 1: SrS
n ® Sn 1 1 given by

w 2 1
n 1 1 ([

-
x , t]) 5 H p 2 1

2 (2t
-

x 1 (1 2 2t)
-

x 0), t P [0, 1/2]

p 2 1
1 ((2 2 2t)

-
x 1 (2t 2 1)

-
x 0), t P [1/2, 1]

where

-
x 0 5 (1, 0, . . . , 0) P Sn 1 1 5 H (x1, . . . , xn 1 2) ) o

n 1 2

i 5 1

x2
i 5 1 J , R n 1 2

is the base point, Sn 5 {
-

x P Sn 1 1 ) xn 1 2 5 0}, and if H+ 5 {
-

x P Sn 1 1 ) xn 1 2

$ 0}, H 2 5 {
-

x P Sn 1 1 ) xn 1 2 # 0}, and Dn 1 1 5 {(x1, . . . , xn 1 1, 0) )
( n 1 1

i 5 1 x2
i # 1}, then p 1 ( 2 ): H 1 ( 2 ) ® Dn 1 1 are the homeomorphisms given by

(x1, . . . , xn 1 2) j (x1, . . . , xn 1 1, 0) with inverses

(x1, . . . , xn 1 1, 0) j 1 x1, . . . , xn 1 1, 1 ( 2 ) ! 1 2 o
n 1 1

i 5 1

x2
i 2

respectively (Spanier, 1966). In particular,

-
xÄ 0 5 Sn 3 {0} 5 Sn 3 {1} 5 {

-
x 0} 3 I ®

w 2 1
n 1 1 -

x 0

and if
-

x Þ
-

x 0, then

[
-

x , 1/2] 5 {(
-

x , 1/2)} ®
w 2 1

n 1 1 -
x

The inverse homeomorphism is given by the following formulas:
-

x 0 j
-

xÄ 0, if
-

x P Sn and
-

x Þ
-

x 0 then
-
x j [

-
x , 1/2] 5 {(

-
x , 1/2)}, (0, . . . , 0,

1) 5 N (north pole) j [ 2
-

x 0, 3/4] 5 {( 2
-

x , 3/4)}, (0, . . . , 2 1) 5 S (south
pole) j [ 2

-
x 0, 1/4] 5 {( 2

-
x 0, 1/4)}, and if

-
x P H 1 ( 2 ) \S

n,
-
x Þ S, N, then

w n 1 1(
-

x ) 5 [
-
z (

-
x ), t 1 ( 2 )(

-
x )] 5 {(

-
z (

-
x ), t 1 ( 2 )(

-
x ))}

with
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-
z (

-
x ) 5

(2(1 2 x1)x1 2 x2
n 1 2, 2(1 2 x1)x2, . . . , 2(1 2 x1)xn 1 1)

2(1 2 x1) 2 x2
n 1 2

and t 1 ( 2 )(
-

x ) 5 1/2 1 ( 2 )x2
n 1 2 /[4(1 2 x1)].

3.2. SU(3) from the Hopf Map h

Let G be a path-connected topological group. Then the set of isomor-

phism classes of principal G-bundles over the n-sphere kG(Sn) is in one-to-

one correspondence with P n 2 1(G) (Steenrod, 1951). This can be understood

from the fact that the n-sphere can be covered by two open sets U1, U2,

which are homeomorphic to n-balls and contain Sn 2 1, and the fact that any
bundle over an n-ball is trivial. Using these trivializations, there is only one

transition function g12: U1 ù U2 ® G for a bundle j . Then we associate to

j the map g12 ) Sn 2 1: Sn 2 1 ® G, called the characteristic map of j . Therefore,

if the characteristic maps of two bundles are in the same homotopy class,

then the corresponding bundles are isomorphic, and a bundle is trivial if and

only if its characteristic map is null-homotopic. Notice that in our construction
of the local charts for SU(3) we have used a different trivialization. In the

following we shall consider the bundles SU(n 2 1) ® SU(n) ®
p n

S2n 2 1 and

call gn: S2n 2 2 ® SU(n 2 1) the corresponding characteristic maps.
To study the case n 5 3 we need the following:

Proposition. The successive suspensions of the Hopf map,

Srh: S4 ® S3, S2
rh: S5 ® S4, . . . , are essential (Steenrod and Epstein, 1962).

As a consequence, we have the following:

Proposition. SU(3) is determined by the suspension of the Hopf map.

Proof. For n 5 3, kSU(2)(S
5) > [S4, S3] > P 4(S

3) > Z 2 5 {0, 1} and g3:

S4 ® S3. By the proposition above, Srh is essential. To see that g3 is also

essential we will show that the bundle SU(3) ®
p 3

S5 is not trivial. By (ItoÃ,

1993), P 4(SU(3)) > 0; on the other hand, P 4(S
5 3 SU(2)) > P 4(S

5) 3 P 4(S
3)

> 0 3 Z 2 > Z 2. Hence SU(3) is not isomorphic to the trivial bundle. Since

P 4(S
3) > Z 2 we have that [g3] 5 [Srh]. QED

4. THE CASE OF SU(N)

4.1. SU(4)

For n 5 4, kSU(3)(S
7) > [S6, SU(3)] > P 6(SU(3)) > Z 6, which has two

generators. This means that up to isomorphism there are five nontrivial SU(3)-

bundles over S7, one of them being SU(4) since P 6(SU(4)) > 0 and P 6(S
7 3
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SU(3)) > P 6(S
7) 3 P 6(SU(3)) > Z 6. Let g4: S6 ® SU(3) be its characteristic

map. If g4 were a homotopy lifting of S3
rh, then there should exist a lifting

g84 by p 3: SU(3) ® S5 of S3
rh: S6 ® S5, i.e., a commutative diagram

SU(3)
g84p op 3

S6 ®
S3

r h

S5

with g84 , g4. We have the following result.

Proposition. p 3 does not lift S3
rh.

Proof. We will show that the homomorphism p 3*: P 6(SU(3)) ® P 6(S
5)

is zero. This implies that any map S6 ®
f

S5 which factorizes through p 3, i.e.,

a map for which there exists a map S6 ®
g

SU(3) such that p 3 + g , f, is null-

homotopic. The result now follows from this since S3
rh is essential.

Consider the long exact homotopy sequence (Steenrod, 1951) of the

principal bundle SU(2) ® SU(3) ®
p 3

S5:

. . . ® P 6(SU(3)) ®
p 3*

P 6(S
5) ®

d
P 5(S

3) ®
i *

P 5(SU(3)) ® . . .

This gives an exact sequence:

. . . ® Z 6 ® b Z 2 ® g Z 2 ® a Z ® . . .

where we called b , g , and a the homomorphisms corresponding to p 3*, d ,
and i *, respectively. Since Z 2 is a torsion group and Z is torsion-free, then

the homomorphi sm a is zero. Therefore g is an isomorphism, i.e., ker( g ) 5
ker( d ) 5 {0} 5 Im( p 3*), i.e., p 3* 5 0. QED

Remark. This result can also be obtained from the general theorem

proved in Section 4.4. However, the proof given above is simpler.

4.2. (H, f )-Structures

Let H and G be topological groups (e.g., Lie groups), j H: H ®
PH ®

p H

BH and j G: G ® PG ®
p G

BG their universal bundles, and f : H ® G
a topological group homomorphism. Then the action fÅ : H 3 G ® G, fÅ (h, g) 5
f (h)g induces the associated principal G-bundle ( j H)G: G ® PH 3 H G ®
BH with total space PH 3 H G 5 {[a, g]}(a,g) P PH 3 G, [a, g] 5 {(ah, f (h 2 1)g)}h P H,
action (PH 3 H G) 3 G ® PH 3 H G given by [a, g] ? g8 5 [a, gg8], and

projection ( p H)G([a, g]) 5 p H(a). PH 3 H G is isomorphic to the pullback

bundle (Bf )*(PG), where the induced function Bf: BH ® BG is uniquely

defined up to homotopy.
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If HTop is the category of paracompact topological spaces and homotopy

classes of maps and Set is the category of sets and functions, then for each

topological group K there are two cofunctors kK and [, BK ] from HTop to
Set such that for each topological group homomorphism f : H ® G there are

natural transformations f*: kH ® kG and Bf*: [, BH ] ® [, BG], and natural

equivalences c H and c G which make the following functorial diagram

commutative:

kH ®
f
*

kG

c H - - c G

[, BH ] ®
Bf

*
[, BG]

So, for each paracompact topological space X the following set-theoretic

diagram commutes:

kH(X ) ®
f
*

kG(X )

c H - > > - c G

[X, BH ] ®
Bf

*
[X, BG]

where kK(X ) 5 {isomorphism classes of principal K-bundles over X }, [X,
BK ] 5 {unbased homotopy classes of maps from X to BK }, c K([ a ]) 5
[ a *(PK )], f

*
([ h ]) 5 [ j ] with h : H ® E ® q X and j : G ® E 3 H G ® q

Å
X,

and Bf
*
([ a ]) 5 [Bf + a ]. If [ j ] P kG(X ), then f 2 1

*
({[ j ]}) is the set of (H, f )-

structures on j ; this set can be empty. So, j has an (H, f )-structure if and

only if there exists a map a : X ® BH such that Bf + a , F, where F is the

classifying map of j . One can show that this definition is equivalent to the

existence of a G-bundle isomorphism

E 3 H G ®
w Å

P

qÅ o qp
X

where H ® E ®
q

X is a principal H-bundle or, equivalently, to the bundle map

E 3 H ®
w 3 f

P 3 G

k ¯ ¯ c

E ®
w

P

qo qp
X

where w 5 w Å + w f with w f : E ® E 3 H G given by w f (a) 5 [a, e] (e is the
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unit of G) (Aguilar and Socolovsky, 1997a). One says that (E, w ) is an (H,

f )-structure on G ® P ® p X.

In the case of smooth bundles, if the Lie group homomorphism

H ® f
G is an embedding , i.e., an injective immersion, then E is called a

reduction of P to H. In this setting, one has the following:

Proposition. If f is an embedding, then w is also an embedding.

Proof. Since w 5 w Å + w f and w Å is a diffeomorphi sm, then w is an

embedding if and only if w f is an embedding; we shall show that w f is an
embedding. (i) w f is injective: Let w f (a1) 5 w f (a2), i.e., [a1, e] 5 [a2, e]; since

[a, e] 5 {(ah, f (h 2 1))}h P H, then there must exist h P H such that (a1, e) 5
(a2h, f (h 2 1), i.e., a1 5 a2h and f (h 2 1) 5 e, but f is injective, so h 2 1 5 h 5
e8, the identity in H, and then a1 5 a2.

(ii) d w f is injective at each a0 P E: Consider the commutative diagram

E 3 G

ip op

E ®
w f

E 3 H G

where i(a) 5 (a, e) and p(a, e) 5 [a, e]. By Greub et al. (1973),

H ® E 3 G ®
p

E 3 H G is a principal H-bundle, so fixing (a0, e) P E 3
G, there is a map a (a0,e): H ® E 3 G, given by a (a0,e)(h) 5 (a0, e) ? h 5
(a0h, f (h 2 1)), in particular, a (a0,e)(e8) 5 (a0, e). One then has the following

diagram of vector spaces:

0 ® Te8H Ð Ð ®
(d a (a0,e))e8

T(a0,e)(E 3 G) Ð Ð ®
(dp)(a0,e)

T[a0,e](E 3 H G) ® 0

(di)a0 - p(d w f )a0

Ta0E

where the horizontal sequence is exact and the triangle commutes. If p1 and

p2 are, respectively, the projections of E 3 G onto E and G, then p1 + i(a) 5
a, i.e., p1 + i 5 idE and p2 + i(a) 5 p2(a, e) 5 e, i.e., p2 + i 5 const, hence

(d( p1 + i))a0 5 (d(idE))a0 5 idTa0E and (d(p2 + i))a0 5 (d(const))a0 5 0.

Therefore, (di)a0(v) 5 ((d( p1 + i))a0(v), (d( p2 + i))a0(v)) 5 (v, 0). On the other

hand, p1 + a (a0,e)(h) 5 p1(a0h, f (h 2 1)) 5 a0h : 5 a a0(h), p2 + a (a0,e)(h) 5 p2(a0h,

f (h 2 1)) 5 f + g (h), where g : H ® H is given by g (h) 5 h 2 1. Therefore

(d a (a0,e))e8(w) 5 ((d( p1 + a (a0,e)))e8(w)), (d( p2 + a (a0,e)))e8(w)) 5 ((d a a0)e8(w),
(df )e8 + ((d g )e8(w). Let (r, s) P Im((di)a0) ù Im((d a (a0,e))e8)); then s 5 0 and

hence 0 5 (df )e8((d g )e8(w)); therefore (d g )e8(w) 5 0 because f is an immersion

and, since g is a diffeomorphi sm, w 5 0, so r 5 (d a a0)e8(0) 5 0, i.e.,

Im((di)a0) ù Im((d a (a0,e))e8) 5 {0}. Finally, let v P ker((d w f)a0); then 0 5
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(dp)(a0,e)((di)a0)(v)), i.e., (di)a0(v) P ker((dp)(a0,e)) 5 Im((d a (a0,e))e8), i.e.,

(di)a0(v) 5 0. Since i is an embedding, then v 5 0, i.e., (d w f)a0 is one-

to-one. QED

Remark. One often finds in the literature (Kobayashi and Nomizu, 1963;

Trautman, 1984) that to define a reduction to a Lie subgroup H , G, w is

required to be an embedding. The proposition above shows that this is a

consequence of the fact that H ® G is an embedding.

4.3. SU(n) ® SU(n 1 1) ®
p n 1 1

S2n 1 1 as an (SU(n), i )-Structure on

U(n) ® U(n 1 1) ®
pn 1 1

S2n 1 1

Proposition. For n 5 1, 2, 3, . . . , the bundle p n 1 1 is a reduction of

the bundle pn 1 1, i.e., one has the U(n)-bundle isomorphism given by the

commutative diagram

(SU(n 1 1) 3 SU(n) U(n)) 3 U(n) ®
w Å 3 id

U(n 1 1) 3 U(n)

l ¯ ¯ c

SU(n 1 1) 3 SU(n) U(n) ®
w Å

U(n 1 1)

qn 1 1o qpn 1 1

S2n 1 1

where l ([D, A ], B) 5 [D, AB], qn 1 1[D, A] 5 p n 1 1 (D) 5 De0, c (C, B) 5
Cj(B), pn 1 1(C ) 5 Ce0, and w Å and j are given below.

Proof. Consider the inclusion SU(n 1 1) ®
w

U(n 1 1); one can easily

show that this is a smooth bundle map between the principal SU(n)-bundle

p n 1 1 and the principal U(n)-bundle pn 1 1. Therefore, by Greub et al. (1973)

the map w Å given by w Å ([D, A]) 5 Dj(A), where j is the inclusion U(n) ® U(n
1 1) with j(A) 5 (

A
0

0
1), is a smooth bundle isomorphism. The inverse of w Å

is given as follows: if C P U(n 1 1), then C 5 Dl(detC ), where D 5
C(l(detC )) 2 1 P SU(n 1 1) and l: U(1) ® U(n 1 1) is the inclusion l(z) 5
(
z
0

0
I), then [D, l(detC )] 5 w 2 1(C ). QED

Remark. Notice that if i : SU(n) ® U(n) is the inclusion, then pn + i 5 p n.

4.4. Proof of the Main Result

Proposition. Let H and G be path-connected topological groups such

that each one has the homotopy type of a CW-complex, and let f : H ® G be

a continuous homomorphism. Then, in the following diagram each horizontal

function is a bijection and each square commutes, for n 5 1, 2, 3, . . . :
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[S2n, G] ®
m G#

[S2n, V BG] ®
adjG*

[SrS
2n, BG] ®

c G

kG(S2n 1 1)

- f# - V Bf# - Bf* - f*

[S2n, H ] ®
m H#

[S2n, V BH ] ®
adjH*

[SrS
2n, BH ] ®

c H

kH(S2n 1 1)

where kK , f*, Bf*, and c K have been defined before, V BK is the loop space

of BK, and f#, m K#, V Bf#, and adjK* are given by f#([ d ]) 5 [ f + d ], m K#([ s ]) 5
[ m K + s ]( m K is defined below), V Bf#([ k ]) 5 [ V Bf + k ] with V Bf: V BH ®
V BG given by V Bf( g ) 5 Bf + g , and adjK*([ a ]) 5 [adjk( a )] with adjK( a )([z, t])
5 a (z)(t), t P [0, 1]. The set [S2n, K ] 5 P 2n(K ) corresponds to the characteris-

tic maps for the K-principal bundles over S2n 1 1.

Proof. The commutativity of the right square has been proved in Section
4.2, with S2n 1 1 5 X. The natural equivalence adjK is given by the exponential
law in function spaces (Spanier, 1966). By Switzer (1975) there exist homo-
topy equivalences m K such that the diagram

H ®
f

G

m H - - m G

V BH ®
V Bf

V BG

commutes up to homotopy, therefore m K# is a bijection and the first square

commutes. Finally, notice that in the diagram of the proposition we are

dealing with based homotopy classes of maps. This corresponds to based

principal bundles. However, since we are taking path-connected topological

groups, the function that forgets the base points is a bijection between based
bundles and the usual unbased bundles of Section 4.2. QED

Theorem. For even n, n $ 2, the clutching map gn 1 1 of the principal

bundle SU(n) ® SU(n 1 1) ®
p n 1 1

S2n 1 1 is a homotopy lifting of the (2n 2
3)th reduced suspension of the Hopf map h. For odd n, n $ 3, p n + gn 1 1 is

null-homotopic.

Proof. We apply the previous proposition to the case H 5 SU(n), G 5
U(n), and f 5 i (the inclusion), for n 5 2, 3, . . . . By the proposition in

Section 4.3, [ j ] 5 i
*
([ h ]) with j : U(n) ® U(n 1 1) ®

pn 1 1

S2n 1 1 and h : SU(n)

® SU(n 1 1) ®
p n 1 1

S2n 1 1. Then one has the commutative diagram

[T 8n 1 1] P [S2n, U(n)] ®
m

kU(n)(S
2n 1 1) { [ j ]

i # - i * -
[gn 1 1] P [S2n, SU(n)] ®

n
kSU(n)(S

2n 1 1) { [ h ]

where m 5 c U(n)) + adjU(n)* + m U(n)# and n 5 c SU(n) + adjSU(n)* + m SU(n)# are
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bijections, and T 8n 1 1 is the clutching map for the principal bundle j (Steenrod,

1951). Then [T 8n 1 1] 5 m 2 1([ j ]) 5 m 2 1( i
*
([ h ])) 5 m 2 1 + i

*
( n ([gn 1 1])) 5

m 2 1 + i
*

+ n ([gn 1 1]) 5 i #([gn 1 1]) 5 [ i + gn 1 1] and therefore T 8n 1 1 , i + gn 1 1.
Consider the following diagram:

U(n 1 1)

¯
U(n)

T 8n 1 1p opn

S2n ®
S2n 2 3

r h

S2n 2 1

Steenrod (1951) proved that for n even, n $ 2, pn + T 8n 1 1 , S2n 2 3
r h, i.e., the

diagram commutes up to homotopy, while for n odd, n $ 3, pn + T 8n 1 1 ,
const. Then, pn + T 8n 1 1 , pn + ( i + gn 1 1) 5 ( pn + i ) + gn 1 1 5 p n + gn 1 1

, H S2n 2 3
r h, n even QED

const, n odd

Corollary. (i) If n is odd (n $ 3), then SU(n), as a principal SU(n 2 1)-

bundle, does not have a reduction to the subgroup SU(n 2 2) ® i SU(n 2 1).

(ii) If n is even (n $ 4), then SU(n), as a principal SU(n 2 1)-bundle, has

a reduction to the subgroup SU(n 2 2) ® i SU(n 2 1).

Proof. By the proposition above we have the following commutative

diagram:

P 2n 2 2(SU(n 2 2)) ®
i #

P 2n 2 2(SU(n 2 1))

© ©

kSU(n 2 2)(S
2n 2 1) ®

i *
kSU(n 2 1)(S

2n 2 1)

SU(n), as a principal SU(n 2 1)-bundle, is represented by the class

[ p n] P kSU(n 2 1)(S
2n 2 1), and [ p n] has a reduction to the subgroup SU(n 2 2)

if and only if [ p n] P Im( i *). Since the diagram commutes, this happens if

and only if the homotopy class of its characteristic map [gn] P P 2n 2 2(SU(n
2 1)) is in the image of i #. By the exact homotopy sequence of the bundle

SU(n 2 2) ® SU(n 2 1) ®
p n 2 1

S2n 2 3,

. . . ® P 2n 2 2(SU(n 2 2)) ®
i #

P 2n 2 2(SU(n 2 1)) ®
p n 2 1#

P 2n 2 2(S
2n 2 3) ® . . .

we have that Im( i #) 5 ker( p n 2 1#). Therefore [ p n] has a reduction to SU(n 2
2) if and only if p n 2 1 + gn is null-homotopic.
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Let n be even; then by the theorem above, p n 2 1 + gn is null-homotopic

and hence [ p n] has a reduction. Let n be odd; by the theorem above, p n 2 1 +
gn . S2n 2 5

r h, which is not null-homotopic (Steenrod and Epstein, 1962);
therefore [ p n] has no reduction. QED

Proposition. SU(n) as a principal SU(n 2 1)-bundle is not trivial, for

all n $ 3; in particular SU(n) is not homeomorphic to SU(n 2 1) 3 S2n 2 1.

Proof. Let n be odd and assume that SU(n) is a trivial bundle. Then this

is equivalent to a reduction to the trivial subgroup {0} ® SU(n 2 1), and

this implies a reduction to any subgroup of SU(n 2 1), in particular to

SU(n 2 2), which contradicts the corollary above.
Let n be even and assume that SU(n) is a trivial bundle. Then SU(n) >

SU(n 2 1) 3 S2n 2 1. By (ItoÃ, 1993), P 2n(SU(n)) > Z n!, P 2n(S
2n 2 1) > Z 2 and,

since n is even, P 2n(SU(n 2 1)) > Z n!/2. Therefore we would have that Z n!

> Z n!/2 % Z 2, but this implies that n!/2 and 2 are relatively prime, which is

a contradiction. QED

5. S2 AND RELATIVITY

As is well known, the Lorentz group, the group of linear transformations
of Minkowski space-time which preserves the scalar product ^ x, y & 5
xT h y, where

1
1 0 0 0

0 2 1 0 0

0 0 2 1 0

0 0 0 2 1 2
is the Minkowskian metric, is a subgroup of the symmetry group of several

gauge theories of gravity (Hehl et al., 1976; Basombrõ Âo, 1980). This means

that O(3, 1) is a subgroup of the structure group of the corresponding principal
bundles. The relationship between these theories and the 2-sphere (the Rie-

mann sphere C ø { ` }) comes from the fact that there is a canonical Lie

group isomorphism between the connected component of O(3, 1), the proper

orthochronous Lorentz group SO0(3, 1), and the group of conformal (MoÈ bius)

transformations of S2, Conf (S2). We recall that Conf (S2) is the set of all

invertible transformations of the Riemann sphere which preserves the angles
between curves and that at each point multiply all the tangent vectors by a

fixed positive number.

Let g 5 (
a
c

b
d) be an element of GL2( C ); we define a MoÈ bius transforma-

tion m: S2 ® S2 as follows: if c Þ 0, then
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z j 5
az 1 b

cz 1 d
if z Þ 2 d/c

` if z 5 2 d/c

and

` j a/c

And if c 5 0, then

H z j
a

d
z 1

b

d

` j `

It is then easy to verify that the following diagram commutes:

Z 2

¯
SL2( C )

c q ol

SO0(3,1) ® t Conf (S2)

where (i) the projections c and l are two-to-one group homomorphisms,

respectively given by

c 1 a b

c d 2 5

1
) a ) 2 1 ) b ) 2 1 ) c ) 2 1 ) d ) 2

2
Re(abÅ 1 cdÅ ) Im(abÅ 1 cdÅ )

) a ) 2 2 ) b ) 2 1 ) c ) 2 2 ) d ) 2
2

Re(acÅ 1 bdÅ ) Re(adÅ 1 bcÅ ) Im(adÅ 2 bcÅ ) Re(acÅ 2 bdÅ )

2 Im(acÅ 1 bdÅ ) Im(adÅ 2 bcÅ ) Re(adÅ 2 bcÅ ) 2 Im(acÅ 2 bdÅ )

) a ) 2 1 ) b ) 2 2 ) c ) 2 2 ) d ) 2
2

Re(abÅ 2 cdÅ ) Im(abÅ 2 cdÅ )
) a ) 2 2 ) b ) 2 2 ) c ) 2 1 ) d ) 2

2 2
with

c 1 a b

c d 2 5 c 1 2 a 2 b

2 c 2 d 2 5 l

(Penrose and Rindler, 1984), and l (g/ ! detg) 5 m with l (g/ ! detg) 5
l ( 2 g/ ! detg); and (ii) t (l) 5 m is the desired isomorphism. SL2( C ) ®

c

SO0(3, 1) and SL2( C ) ®
l

Conf (S2) are Z 2-principal bundles.
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Thus we conclude that the symmetry group of the standard model

G8SM, when gravitation is included, locally contains, as a space, S1 3 (S3)2 3
S5 3 Conf (S2).

Remark. In the framework of the theory of categories, functors, and

natural transformations, some of the geometrical objects of the previous
sections, e.g., spheres and the Hopf map, have a natural origin. This suggests

a possible relation between symmetries in nature, and therefore conservation

laws, and some of the most general mathematical concepts. The basic idea

is that of a representable functor (Aguilar and Socolovsky, 1997b).
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